@article{,
title= {GANGogh training data set},
keywords= {GANGogh training data, Generative Adversarial Networks (GANS), Machine Learning, Art},
journal= {},
author= {},
year= {},
url= {https://github.com/rkjones4/GANGogh},
license= {},
abstract= {This is a training data set that can be used for the GANGogh machine learning model.
Once downloaded, modify the styles variable in tflib/wikiartGenre.py as follows:
styles = {'abstract': 14999,
'animal-painting': 1798,
'cityscape': 6598,
'figurative': 4500,
'flower-painting': 1800,
'genre-painting': 14997,
'landscape': 15000,
'marina': 1800,
'mythological-painting': 2099,
'nude-painting-nu': 3000,
'portrait': 14999,
'religious-painting': 8400,
'still-life': 2996,
'symbolic-painting': 2999}},
superseded= {},
terms= {}
}