Type: Dataset
Tags: machine learning, art, GANGogh training data, Generative Adversarial Networks (GANS)
Bibtex:
Tags: machine learning, art, GANGogh training data, Generative Adversarial Networks (GANS)
Bibtex:
@article{, title= {GANGogh training data set}, keywords= {GANGogh training data, Generative Adversarial Networks (GANS), Machine Learning, Art}, journal= {}, author= {}, year= {}, url= {https://github.com/rkjones4/GANGogh}, license= {}, abstract= {This is a training data set that can be used for the GANGogh machine learning model. Once downloaded, modify the styles variable in tflib/wikiartGenre.py as follows: styles = {'abstract': 14999, 'animal-painting': 1798, 'cityscape': 6598, 'figurative': 4500, 'flower-painting': 1800, 'genre-painting': 14997, 'landscape': 15000, 'marina': 1800, 'mythological-painting': 2099, 'nude-painting-nu': 3000, 'portrait': 14999, 'religious-painting': 8400, 'still-life': 2996, 'symbolic-painting': 2999}}, superseded= {}, terms= {} }