LiTS – Liver Tumor Segmentation Challenge (LiTS17)
Patrick Christ

folder LITS17 (262 files)
filesegmentation-7.nii.zip 274.87kB
filesegmentation-8.nii.zip 262.23kB
filesegmentation-9.nii.zip 247.34kB
filesegmentation-6.nii.zip 249.21kB
filesegmentation-4.nii.zip 682.10kB
filesegmentation-5.nii.zip 225.11kB
filesegmentation-2.nii.zip 257.34kB
filesegmentation-0.nii.zip 61.06kB
filesegmentation-1.nii.zip 58.74kB
filesegmentation-3.nii.zip 279.49kB
filesegmentation-10.nii.zip 257.11kB
filesegmentation-11.nii.zip 262.97kB
filesegmentation-12.nii.zip 277.80kB
filesegmentation-13.nii.zip 404.15kB
filesegmentation-14.nii.zip 278.67kB
filesegmentation-15.nii.zip 276.68kB
filesegmentation-16.nii.zip 533.81kB
filesegmentation-17.nii.zip 377.53kB
filesegmentation-18.nii.zip 311.28kB
filesegmentation-19.nii.zip 301.80kB
filesegmentation-20.nii.zip 300.34kB
filesegmentation-21.nii.zip 236.82kB
filesegmentation-22.nii.zip 85.54kB
filesegmentation-23.nii.zip 202.73kB
filesegmentation-24.nii.zip 159.62kB
filesegmentation-25.nii.zip 284.89kB
filesegmentation-26.nii.zip 280.87kB
filesegmentation-27.nii.zip 387.45kB
filesegmentation-28.nii.zip 149.35kB
filesegmentation-29.nii.zip 116.40kB
filesegmentation-30.nii.zip 146.88kB
filesegmentation-31.nii.zip 77.99kB
filesegmentation-32.nii.zip 126.39kB
filesegmentation-33.nii.zip 134.47kB
filesegmentation-34.nii.zip 108.55kB
filesegmentation-35.nii.zip 152.18kB
filesegmentation-36.nii.zip 91.53kB
filesegmentation-37.nii.zip 109.27kB
filesegmentation-38.nii.zip 103.52kB
filesegmentation-39.nii.zip 211.22kB
filesegmentation-40.nii.zip 124.83kB
filesegmentation-41.nii.zip 100.63kB
filesegmentation-42.nii.zip 92.85kB
filesegmentation-43.nii.zip 149.29kB
filesegmentation-44.nii.zip 128.60kB
filesegmentation-45.nii.zip 71.04kB
filesegmentation-46.nii.zip 64.69kB
filesegmentation-47.nii.zip 115.60kB
filesegmentation-48.nii.zip 102.68kB
Too many files! Click here to view them all.
Type: Dataset
Tags:

Bibtex:
@article{,
title= {LiTS – Liver Tumor Segmentation Challenge (LiTS17)},
keywords= {},
author= {Patrick Christ},
abstract= {The liver is a common site of primary (i.e. originating in the liver like hepatocellular carcinoma, HCC) or secondary (i.e. spreading to the liver like colorectal cancer) tumor development. Due to their heterogeneous and diffusive shape, automatic segmentation of tumor lesions is very challenging. Until now, only interactive methods achieved acceptable results segmenting liver lesions.

With our challenge we encourage researchers to develop automatic segmentation algorithms to segment liver lesions in contrast­-enhanced abdominal CT scans. The data and segmentations are provided by various clinical sites around the world. The training data set contains 130 CT scans and the test data set 70 CT scans. The challenge is organised in conjunction with ISBI 2017 and MICCAI 2017. For MICCAI 2017 we added tasks for liver segmentation and tumor burden estimation.

![](https://i.imgur.com/ia2qGlH.png)

![](https://i.imgur.com/eDN20ck.png)

Paper reference: https://arxiv.org/abs/1901.04056


},
terms= {},
license= {https://creativecommons.org/licenses/by-nc-nd/4.0/},
superseded= {},
url= {https://competitions.codalab.org/competitions/17094}
}


Send Feedback